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I. INTRODUCTION

Accurate and comprehensive 3D scene understanding and
reasoning are crucial for the development of autonomous
driving systems. In recent years, there has been significant
interest in vision-centric 3D perception [5, 28, 23, 60, 52,
66] as a promising alternative to LiDAR-based methods
[24, 71, 44, 3, 47] in autonomous driving academia.
While LiDAR-based methods, which rely on explicit depth
measurements, have demonstrated leading performance on
public datasets [16, 4, 2, 50, 20], vision-based approaches
offer distinct advantages in terms of cost-effectiveness and
the ability to detect long-range distance objects. Furthermore,
vision-based methods excel in identifying road elements
such as traffic lights and road signs, which is a valuable
feature compared to their LiDAR-based counterparts. This
growing attention towards vision-based 3D perception in the
context of autonomous driving reflects its potential to enhance
the capabilities and efficiency of autonomous vehicles in
real-world scenarios.

In the realm of vision-centric perception for autonomous
driving systems, the utilization of multiple cameras has gained
prominence in capturing both spatial and temporal cues from
2D RGB images. While monocular methods [5, 66, 43, 46]
offer a straightforward solution, they tend to process individual
camera views independently, limiting their ability to capture
and leverage information across multiple cameras. In contrast,
multi-camera methods [13, 28, 23, 60, 52] have emerged
as a compelling unified alternative, demonstrating progress
in the realm of 2D-to-3D transformation. By constructing
comprehensive representations of the surrounding scene, these
methods enable various applications, including 3D object
detection, semantic occupancy prediction, and semantic scene
completion.

The task of lifting 2D perspective observations into 3D
space is an ill-posed problem due to the loss of depth
information in the formation of 2D images. However, with
the utilization of strong prior information, this task remains
tractable. The effectiveness of 3D scene understanding
heavily relies on the representation of the 3D environment, as
illustrated in Figure 1. Traditional approaches [56, 46] involve
dividing the 3D space into voxels and assigning each voxel
a vector to denote its status. However, this representation
proves computationally expensive. Alternatively, Bird’s
Eye View (BEV) representation, which disregards height

Fig. 1. Comparison of Voxel, BEV and TPV [23] latent vector fields
used to represent 3D scenes. While BEV is more efficient than the Voxel
representation, it discards the height information and cannot provide a holistic
understanding of a 3D scene. TPV is an approach to increase efficiency
without compromising the accuracy of representation. But, TPV is susceptible
to the deficiency of fine-grained semantic information.

and focuses on the top-down view, offers a more efficient
solution. While BEV-based methods [28, 22, 13, 27, 34,
32, 37] perform remarkably well in 3D object detection,
they struggle to encode the 3D structure of objects, thus
hindering performance in 3D semantic occupancy prediction.
To overcome this limitation, TPVFormer [23] introduces a
Tri-Perspective View (TPV) representation, incorporating two
additional perpendicular planes. This hybrid explicit-implicit
representation [8, 7] aims to capture both the efficiency of
BEV and the ability to encode the 3D structure of objects.

The Semantic Scene Completion (SSC) task was initially
introduced in the SSCNet paper [49] and gained further
prominence with the advent of SemanticKITTI [2], which pro-
vided an official dataset and competition track. More recently,
another related task called Semantic Occupancy Prediction
(SOP) has emerged, albeit with slight distinctions. Both SSC
and SOP share the common objective of predicting the occu-
pancy status and semantic class of a voxel at a given spatial
location. However, there exist subtle differences between the
two. Firstly, SSC utilizes partial 3D data obtained from LiDAR
or other active depth sensors, thus justifying its name as a
”completion” of a 3D semantic scene. On the other hand, SOP
relies on 2D images, potentially from multiple cameras and
frames, as its input. Additionally, while SSC typically focuses
on static scenes, SOP is designed to handle dynamic objects
as well.



II. RELATED WORK

A. Latent representations for 3D perception

In the context of vision-centric 3D perception, a disparity
exists between the inputs, which comprise 2D images, and
the desired outputs, which entail a representation of a 3D
space. To bridge this disparity, researchers have delved into
vision-based approaches that transform 2D perspective image
features into their 3D counterparts [28, 37, 22, 27]. These
vision-based 2D to 3D transformation methods subsequently
enable a range of downstream tasks, including 3D object
detection [48, 54, 58, 28, 30, 22], semantic map construction
[37, 69, 42, 36], and motion prediction [71, 1, 21].

LSS [37] and its subsequent works [27, 21, 67, 41]
employ a prediction mechanism that estimates the depth
distribution at the pixel level, facilitating the projection
of image features into 3D points. These 3D points are
subsequently voxelized to generate 3D perspective features.
Voxel-based scene representation techniques are employed
in this context, involving the discretization of the 3D space
into voxels and the characterization of each voxel through
a vector feature. Voxel-based methods find application in
various tasks, including LiDAR segmentation [29, 51, 12, 64,
63] and 3D scene completion [44, 5, 9, 25, 61].

In recent studies, BEVFormer [28] and TPVFormer [23]
have incorporated deformable attention mechanisms [72,
53] to enhance the fusion of Bird’s Eye View (BEV) and
Tri-Perspective View (TPV) queries with corresponding
image features. TPVFormer introduces a tri-perspective view
approach for predicting 3D occupancy. However, it should be
noted that the output of TPVFormer exhibits sparsity due to
the utilization of LiDAR supervision.

The compression of 3D scenes into 2D ground planes has
proven to strike a remarkable balance between performance
and efficiency in tasks like 3D object detection, semantic map
construction, and motion prediction. This approach succeeds
because these tasks often necessitate predictions in the form of
rigid bounding boxes or Bird’s Eye View (BEV) representa-
tions. However, it is important to acknowledge that condensed
BEV feature maps alone cannot restore a comprehensive
understanding of real-world 3D scenes. Consequently, the need
arises for a more detailed and nuanced 3D representation to
address the challenge of 3D semantic occupancy comprehen-
sion.

B. Vision-based 3D perception

Leveraging cameras as input offers several advantages,
including cost-effectiveness, the ability to detect long-range
distance objects, and the identification of vision-based road
elements such as traffic lights and stop lines.

Vision-based approaches for 3D semantic occupancy
prediction involve processing a T-frame historical sequence

of N surround view camera images as input, utilizing known
camera intrinsic and extrinsic parameters. The objective
is to estimate the state of each voxel within a 3D scene.
Typically, the voxel state is represented in a 2-dimensional
format, indicating whether the voxel is ”occupied,” ”free,” or
”unobserved,” with semantic labels assigned to ”occupied”
voxels to specify their category. Alternatively, a label such as
”GO” may be used to indicate general/unknown objects.

There exists a range of successful LiDAR-based methods
for 3D object detection [70, 24, 62, 57, 39, 40, 14, 45] and
3D perception [24, 65, 38, 47, 71, 44], which have been
extensively evaluated and benchmarked using public datasets
[17, 4, 50, 2]. Recent advancements have focused on the
development of LiDAR-camera fusion methods for 3D object
detection [38, 10, 32], as well as vision-based 3D perception
methods that incorporate information from multiple views
to estimate depth in the surrounding environment [19, 59].
Additionally, vision-based approaches have demonstrated
competitive performance in tasks such as 3D object detection
[28, 30, 32, 22, 27], and semantic map construction [1, 21,
67]. These advancements have sparked rapid progress in
vision-based 3D perception, challenging the dominance of
LiDAR-based methods.

Vision-based 3D surround perception methods face the
challenge of lacking direct geometric input, necessitating the
inference of 3D scene geometry based on semantic cues.
These methods can be categorized into depth-based methods
and other approaches. Depth-based methods explicitly predict
depth maps from image inputs to extract 3D geometric infor-
mation [32, 37, 22, 27, 67, 41, 56, 33, 35, 32]. A commonly
adopted pipeline involves predicting categorical depth distri-
butions and utilizing them to project semantic features into 3D
space [37]. On the other hand, other methods implicitly learn
3D features without explicitly generating depth maps [54, 28,
58, 30, 55, 11]. For instance, BEVFormer [58] incorporates
cross attention mechanisms to progressively refine BEV grid
features using 2D image features.

C. Semantic Scene Completion and 3D semantic occupancy
prediction

3D Semantic Occupancy Prediction (SOP) and Semantic
Scene Completion (SSC) are closely interconnected tasks.
The objective of 3D semantic occupancy prediction is to
reconstruct the detailed geometry and semantic information of
the surrounding 3D environment. When the input consists of
LiDAR point cloud data, this process is referred to as LiDAR
segmentation and encompasses both sparse training-testing for
3D SSC and dense training-testing scenarios. The pioneering
work on SSC was introduced by SSCNet [49], which jointly
addresses the inference of geometry and semantics in the
scene.

The distinction between 3D Semantic Occupancy Prediction
(SOP) and Semantic Scene Completion (SSC) lies in their



respective focuses. SSC primarily concerns itself with
inferring occluded regions based on the visible parts of the
scene, whereas SOP does not aim to estimate the invisible
regions. Additionally, SSC typically operates in the context
of static scenes, whereas SOP extends its applicability to
dynamic scenes.

MonoScene [5] is a pioneering work in vision-based
3D perception, specifically focusing on Semantic Scene
Completion (SSC). It introduces the first monocular
framework for SSC, enabling the reconstruction of outdoor
scenes using RGB inputs alone. The approach employed
by MonoScene involves initially constructing a 3D feature
through sight projection, followed by processing it using a
classical 3D UNet. Building upon this foundation, TPVFormer
[23] extends the concept to multi-camera setups, enabling 3D
semantic occupancy prediction using multiple cameras.

The approach employed by MonoScene [5], which relies on
3D convolutions, has certain limitations. One such limitation
is that it reasons semantics within a relatively fixed receptive
field, which may not account for the varying distribution
patterns of different semantic classes. Additionally, the
spatial invariance of 3D convolution does not effectively
handle the sparse and discontinuous 3D features generated by
state-of-the-art image-to-3D transformation techniques [37,
22, 27]. Moreover, 3D convolution can require a substantial
number of parameters, resulting in inefficiency for long-range
methods.

Following the successful introduction of vision transformers
[15, 31] in various vision tasks [47, 31, 6, 68, 18, 26], the
adoption of this architecture has become prevalent. The
notable achievements attained with vision transformers have
served as a motivation for leveraging the attention mechanism
in the construction of encoder-decoder networks for 3D
semantic occupancy prediction.
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